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Abstract

Contrary to the Cauchy and Poisson classical
continuum, the new theory for structured or blocked
media must contain several degrees of freedom. It is
evident, because elementary blocks may transfer the
motion by contact interactions, by rotations, and by
group of particles. It means, that the energy contents
is not only in the first derivatives (strains). The
potential energy contents is in the second derivatives
(curvatures) and in other higher order derivatives. It
means that the equation of motion of blocked media
should contain several order derivatives; in other
words, the equation of motion may have very high, or,
probably, an infinite derivative order.

Introduction

The present paper is part of the project submitted to
Science Without Borders with the title “The Prediction of
Stresses and Strains using P and S Wave Velocities in
Order to Localize Areas of Small Pressure in Oil and Gas
Productive Layers as Natural Sucking Pumps”. This project
is devide in different relative independent steps.

In the first step we need to do conventional seismic
investigations in order to obtain information about P and S
wave velocities, and also about the configuration of seismic
boundaries.

The second step is the prediction of stresses in the
geological structures using the information obtained in the
first step. Also, the prediction of nontrivial behavior of
pressure, since it may decrease with depth, and creates
natural pumps which accumulates fluids. We must predict
these natural pumps.

The third step is the prediction of rupture in pressure
between solid and fluid, that depend on the structure of
pore space.

The present investigation is part of the third step described
above.

In order to start to predict stress and strain for real
geological structures, we need to know P and S velocites,
and the configuration of seismic boundaries. This is a
classical problem of seismic investigations. Also, the
present description is restricted to isotropic models, and for
anysotropic situations the equations are more complicated.

It is very important that the acquired data be three
component. From land observed data, we can use S waves
from horizontal vibroseis, together with VSP technology.
From marine observed data, we can use AVO technology
looking for converted P-S-P waves. In special cases, we
can use petrophysical measurments of borehole data.

Equation of motion for structured media

The new model of structured continuum contains internal
geometry of micro-inhomogeneous medium described
mainly by porosity and specific surface.

The porosity, f , is described as a fraction of the empty
space, VE , to the total volume, VT , of the material including
the solid and empty space: f = vE

vT
. The empty space may

contain gas and liquid.

The specific surface area (SSA) is a relation between the
real surface of pores and cracks to the volume of the
specimen, σ0 =

S
VT

[cm−1], it is used for solving petrophysic
and chemical problems, and it is measured by Mercury
(Hg), and by gas absorption methods. Examples of
geometrical figures, for instance, from a tetrahedron to a
sphere gives decaying values in the form σ0 ∝

1
a , where a

is the solid parameter, like radius or side. (Mavko et al.,
1999).

Figure 1 shows an element volume of a structured body,
where l0 is the average distance between pores. There is a
theorem of Integral Geometry, which relates of the Specific
Surface σ0 to l0 by the formula, Sibiryakov (2002),

σ0l0 = 4(1− f ). (1)

Figure 2 represents another situation, where we have the
structure of the cracked media characterized by the specific
surface, σ0, or the arithmetic average distance, l0, between
cracks. In the grain media we have negative curvature of
grains, but positive curvature for the pore space. In cracked
media, we have as a rule zero curvature for the boundary
porous/solid. Positive curvature of solid for cavernous
pores gives us large pressure jump between solid and
liquid. (Landau and Lifschitz, 1961)

In equation (1) f is the porosity; therefore, if there is a
sample with specific surface σ0, there is automatically an
average size l0 of the micro-structure. The distinction
between classical and structured continuum should be
clear in Figure 1. In the volume bounded by surface C there
is an equation of equilibrium because all forces cancel each
other, while in the volume bounded by surface D there is
no equation of equilibrium because all forces concentrate
on one side of the grain, and the other side does not
have forces. The idea is to create a new space model for
structured media.

We consider some finite body volume, where surface forces
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Figure 1: Element of structured body of granular medium,
where l0 is an average distance between cracks, or grains.
The problem is to create an equation of equilibrium for
arbitrary element of the discrete medium. For the surface
C there is an equation of equilibrium, but on the surface D
there is not.

Figure 2: Another complex element of structured body of
cracked medium, where l0 is an average distance between
cracks.

are applied on a sphere of radius l0, while the inertial forces
are applied in the structure center. There is no possibility
to make an elementary volume tend to zero, coinciding
to points on the surface, and the inertial forces like in
classical continuum; we must consider a finite volume, as
a representative body volume, and we have a problem of
inertial forces at different positions on the surface.

The main feature of this approach is to fill all space,
including pores and cracks, by force field. Due to such
operation, we have continuous image of real complicate
medium. The natural laws must apply to continuous
image of the medium, and not to the real one. The one-
dimensional operator for field translation from point x to
point x± l0 is given by the symbolic formula, Maslov (1973),

u(x± l0) = u(x)e±l0Dx . (2)

This form applies to any field, but here u(x,y,z, t) stands for
displacement.

In formula (2), the field translation operator Dx =
∂

∂x , for 3D
space, can be rewritten as follows, Sibiryakov and Prilous

(2007),

P(Dx,Dy,Dz) =
sinh(l0

√
∆)

l0
√

∆
= E +

l2
0∆

3!
+

l4
0∆∆

5!
+ . . . (3)

where E is the unit operator, ∆ is the Laplace operator,
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 = ∆, and P is the special symbolic averaging
operator given by:

P(Dx,Dy,Dz)=
1

4π

∫ 2π

0

∫
π

0
el0(Dx sinθ cosφ+Dy sinθ sinφ+Dz cosθ) sinθdθdφ

(4)
In classical continuum, we apply the impulse conservation
law, Fi = müi to any element of the medium, or Fi =

∂σik
∂xk

=

ρ
∂ 2

∂ t2 ui, where m stands for mass, and ρ for density.

In the present case, we need to fill all pore space by a force
field P( ∂σik

∂xk
) = ρ

∂ 2

∂ t2 ui. Instead of real stresses, which may
change from a large value (in the grain) down to zero (in the
pore space), we use the image of real stresses. Namely,
we use a continuous field constructed by application of
the P operator to the real complicate force field. For this
continuous image of real stresses, P(σik), we can apply the
impulse conservation law. In classical continuum model,
this operation is made by nature itself. This model of the
continuum requires some mathematical operations in order
to create the continuum medium.

In one-dimensional case, plane waves, stationary motion,
u(x,y,z, t)→ u(x,ω = kBvB; l0), we have a simpler equation
in the form, Sibiryakov and Prilous (2007),(

E +
l2
0

3!
∂ 2

∂x2 +
l4
0

5!
∂ 4

∂x4 + . . .

)
uxx + k2

Bu(x,kB; l0) = 0, (5)

where kB = ω/vB stands for both P and S waves.
Considering only one term, we write equation (5) as:

uxx + k2
Bu = 0. (6)

Considering only two terms, we write equation (5) as:

uxx +
l2
0

3!
uxxxx + k2

Bu = 0. (7)

We can look at a solution of the equation of motion (5) in
the stationary form,

u(x,y,z, t) =U(x,y,z)eiωt . (8)

For one dimensional case, U(x,y,z) has the form U(x), and:

U(x) = A(k)eikx = A(
ω

v
)ei ω

v x. (9)

We are not applying Fourier transform, but looking at
discrete values of the temporal radial frequency (ω), and
of the wavenumbers (kx,ky,kz).

Condition for negative Poisson coefficient

Substituting representation (9) into equation (5), we obtain
the dispersion equation for the unknown wavelength k,

sin(kl0)
kl0

=

(
kB

k

)2
, (10)
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where kB = ω

vB
is the wavenumber of the usual both P or

S wave. Equation (10) is a transcendental equation with
respect to the unknown value of k. For the condition l0→ 0,
then k→ kB, and it means that for infinite small structures
we have usual wave velocities. In the case that l0 is not very
small, then k < kB, the dispersion velocity v = ω

k is greater
than vB, and the vP and vS velocities are decreasing due to
structure.

Numerical examination of equation (10) shows that the P-
wave velocity decreases more rapidly than S-wave velocity.
This result means that the ratio γ = vS

vP
may be greater

than 1√
2
. For classical continuum model, γ =

√
µ

λ+2µ
,

and if λ = 0, than γ =
√

1
2 ≈ 0.705, where (λ ,µ) are the

Lamè parameters. Now, if in measuring we have γ >
0.705, we must have λ < 0. As a result, the Poisson
coefficient σ = 1

2
λ

λ+µ
is negative, because λ < 0 and

of small value, such that the denominator is positive.
Experimental observations for this strange result was first
published by Gregory (1976). The reason for negative
Poisson coefficient is due to dispersion phenomenon in
structured media. The real Poisson coefficient measured
in statics, not by wave propagation, does not give such
strange result.

In Figure 3 it is shown the relation between P and S
wavenumbers, kB(ω)

k0(ω)
, versus the ratio ε = l0

λB
. It is clear

that the P wavenumber (curve 1) increases faster than
the S wavenumber (curve 3), what means that the P-
wave velocity decreases faster than the S-wave velocity.
The ratio vS

vp
increases from 1 to 1.25, from low to high

frequencies.

Figure 3: The horizontal axis gives 2πl0/λB ratio. Curve 1
shows the increase of the wavenumber ratio kP(ω)/k0(ω);
i.e., decrease of vP by increasing frequency. Curve 3
means the same for S waves. Curve 2 gives the increase
of the vS/vP ratio up to negative Poisson coefficient σ .

Figure 4 shows the real and imaginary parts of the roots of
the dispersion equation (10) as a function of ε = l0

λB
. The

roots of equation (10) are obtained for kl0 = nπ, (n integer),
and k very large, velocity very small. The interpretation of
this figure is that if ε � x, then there is wave with abnormal
small velocities less than vS. Besides this conclusion,

velocities are discrete in blocked media, while velocities are
continuous in classic media. This situation is analogous in
quantum mechanics (the discrete points represent discrete
spectrum of eigenvalues).

No wonder, equation (10) contains derivatives of infinite
order, and this circumstance is due to the several degrees
of freedom for structured bodies. For l0 → 0, we have the
usual equations of motion for classical continuum space
model.

Figure 4: Position of complex roots of equation (10). The
horizontal coordinate x corresponds to Real(kl0), and y to
Imag(kl0). The vertical coordinate ε is kBl0. If kBl0 � 1,
there are only real roots.

Blocked media with viscous liquid

Let us suppose that in the center of gravity (i.e., in the point
x) the particle velocity is u̇i(x). The average distance from
point x to the boundary of grain is f l0, and it means that the
velocity on the grain boundary is represented by a sum of
derivatives of the Taylor expansion in the form,

u̇i(x+ f l0) = u̇i(x)+ f l0

(
∂ u̇i

∂x
cos(r,x)+

∂ u̇i

∂x
cos(r,y)+

∂ u̇i

∂x
cos(r,z)

)
+O(( f l0)2). (11)

This expansion is bounded to the first order term with
respect to f l0. This sum is equal to zero due to viscous
sticking, and the derivative acts at the point x. We can
suppose that the derivatives act on the contact skeleton-
fluid with accuracy up to small values of the second order,
and this means that,

∂ u̇i

∂ r
=

∂ u̇i

∂n
cos(r,n). (12)

The average value of cos(r,n) in three-dimensional space
is 0.5, and that there is a relation between the derivative
with respect to normal, ∂ u̇i

∂n , for the particle velocity and the
velocity, u̇i, itself in the center, x, of the pore, namely,

− u̇i =
1
2

f l0
∂ u̇i

∂n
. (13)

The surface force, ϕi, of viscous friction is proportional to
viscosity, η , and to the derivative of particle velocity, u̇,
with respect to the normal, n, to the surface that separates
matrix and fluid,

ϕi = η
∂ u̇i

∂n
=−2

η

f l0
u̇i. (14)
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POROSITY AND PERMEABILITY MODEL 4

The volume force of viscous friction is a product of the
surface force and of the specific surface area of the pore
space, i.e.,

Fi = σ0η
∂ u̇i

∂n
=−2

σ0η

f l0
u̇i = 8

η(1− f )
f l2

0
u̇i. (15)

In the case of the classical continuum model, the viscous
friction gives the Telegraph equation (17) instead of the
Wave equation (16):

uxx =
1
c2 ü. (16)

In the structured continuum model, the forces created by
internal stresses act by the P-operator.

In the formula (15), the factor
1

2 f
σ2

0 plays the role of

inverse permeability. It means that the permeability φ is
a geometric parameter, and it is equal φ = 2 f/σ2

0 shown
in Figure 5, from where we learn that σ0 diminishes
permeability very fast.

Such point of view shows that it is not necessary to use
Darcy law for wave physics of percolation.

Figure 5: The horizontal axis are porosity f and specific
surface σ0, and the vertical axis is the permeability φ .

The equation (5) of motion is of infinite order, because
in micro-inhomogeneous bodies there are many internal
waves with different velocities. The Cauchy-Poisson
hypothesis is that P = E, what means that any property is
an average for any arbitrary small volume. In reality, we
do not have the possibility to use arbitrary small volumes,
because the representative volume must contain some
elementary structures (grains), and they have internal
motions, rotations and so on. If l0 ⇒ 0, we have the
classical standard equation of motion, and P = E.

For usual classical continuum (P = E), there is a simpler
equation in the form,

uxx =
1
c2 ü+

β

f
u̇, (17)

where β = σ2
0

η

λ+2µ
[T L−2] is a characteristic of stress

relaxation time for P waves, and analogous formula, β =
σ2

0
η

µ
, for S waves.

The solution of equation(17) for stationary vibration in
the case of small parameter values, β/ f ⇒ 0, gives
an attenuation with constant decrement, which does not
depend on frequency. For large parameter values, β/ f ⇒
∞, there is a solution with an attenuation that is proportional
to the square root of frequency, ∝

√
ω.

For blocked media, the viscous friction creates velocities
only by fluctuation of particles, and it means that the friction
forces act by the P−E operator (Sibiryakov et al., 2011).
The equation of motion in this blocked and viscous media
can be represented in the form,

P
(

∂σik

∂xk

)
− iωβ

2 f
σ

2
0 (P−E)U + k2

BU = 0, (18)

where U = U(x,y,z,ω). The correspondent dispersion
equation is given by,

sin(kl0)
kl0

(
k2− iωβ

2 f
σ

2
0

)
+

iωβ

2 f
σ

2
0 = k2

B. (19)

The case l0 → 0, k2 → k2
B, means that in classical

continuum media, with infinitely small structure size, the
viscous friction is absent. For small values of l0 there is
approximately equality for wavenumbers,

k = kB

(
1+

2
3

i
ωβ

f

)
, kB =

ω

vP,S
. (20)

It means that the attenuation is proportional to the square
of frequency with respect to the usual viscous liquid.

Results and Conclusions

At present, the fluid percolation theory based on Darcy’s
law means that we can ignore stress-strain state in solids.
Besides that, percolation theory contains porosity, but do
not contain specific surface, that creates forces to stop
percolation. Instead of Darcy’s law we need predict stress-
strain in solid and the rupture of pressure between phases.
This rupture depends on structure of pore space, and not
on porosity only.

There is no necessity to use Darcy’s law for determination
of permeability, since it is a geometric property of porous
medium. Permeability value is directly proportional to
porosity, and inversely proportional to the square of the
specific surface for a specimen.

The porosity and specific surface give a possibility to use
alternative methods for measuring of permeability.

Equation of motion with long waves compared to the
structure does result in the wave equation, but in the
telegraph equation, that describes the propagation and
diffusion of waves.
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